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C H A P T E R  1  

Introduction 

BACKGROUND 

Many transportation structures have components located in waterways, such as coastal marine 
environments or riverine systems. The most common of these components are the substructures of bridges 
spanning waterways. As with all bridges in the United States, DOTs are legally obligated to inspect and 
maintain these bridge components on a routine basis, per the National Bridge Inspection Standards (NBIS) 
put forth by the Federal Highway Administration (FHWA) [1]. 

These bridge substructure components, referred to here as hydraulic structures, pose unique challenges for 
DOTs and inspection engineers since they require complex rigging operations and specialized dive teams 
during the inspection (Figure 1). 

 
Figure 1. Hydraulic bridge and snooper truck [2], inspection dive team [3], and inspection ROV. 

So-called “snooper trucks” supported from the bridge deck are expensive and cause significant traffic 
disruptions. Climbing teams can mitigate traffic disruptions but are costly to deploy and not always widely 
available. Often, hydraulic structural inspections also require the use of expensive temporary platforms 
within a waterway that can disrupt traffic through a waterway. 

These challenges are compounded by the fact that, by their nature, these structures are partially submerged 
in a given waterway. The submerged portions of the structures are subjected to complex hydraulic loadings 
that accelerate degradation or destabilize the structure. Most notably is the scour phenomenon, in which 
water channel flows cause concentrated erosion around bridge foundations, ultimately leading to collapse.  

Given the challenges of inspecting these structures, they are excellent candidates for the use of robotics. 
Several commercial companies offer robotic inspection services. However, current capabilities remain 
limited with respect to quantitative and automated data analysis, mechanistic understanding of collected 
data and, critically, with the systematic connection of robotically collected data with element-level NBIS 
inspection protocols. Robotic inspection systems have been deployed above the waterline [4–7], as well as 
below [8–12]. However, few studies simultaneously combine data from above and below the water for 
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integrated assessment. Relevant studies have considered data fusion of sonar and imaging for 
reconstruction[13–16], or using multi-robot teams in a post-disaster context [17,18].  

OBJECTIVES 

The objective of this research project is to advance the state of the art in monitoring hydraulic structures 
through the development of a multi-modal inspection framework that includes digital imaging information 
from both humans and robots. This framework is designed to collect digital images of the structure above 
and below the water surface separately. The complete set of information from the team is then assessed 
through machine learning and computer vision methods that provide automated and quantitative assessment 
data. Analyzing the complete set of information allows for automated, element-level bridge inspection and 
holistic assessment of the complete hydraulic structure.  

Specific objectives of the project include: 

• An evaluation of existing robotic and sensor technologies and inspection protocols  
• A study of robotic approaches to imaging underwater structural components 
• A study of approaches for imaging above water components 
• Experimental testing of these approaches under laboratory and field conditions 

The project advances the state of the art in condition assessment through the development of robotic, 
computer vision, and artificial intelligence methods to automate data collection and analysis, and by directly 
integrating that data with existing asset management practices. The project includes laboratory experiments 
and a series of full-scale field experiments on the Route 1 Bridge over the Occoquan River in Woodbridge, 
Virginia.   

DATA AND DATA STRUCTURES 

The digital images collected in both the laboratory and field experimental tests, and products generated 
from these digital images, are the primary data for this project. These digital images include both still 
images and video recordings from an array of cameras. In addition, a variety of programming scripts were 
generated for the purposes of processing and analyzing all project data. The project also resulted in the 
creation of numerical finite element models used for experimental validation and digital twin integration. 
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C H A P T E R  2  

Existing approaches and protocols 

REMOTE SENSING FOR STRUCTURAL INSPECTION 

Engineers rely on measurements for designing, constructing, and maintaining infrastructure to meet 
stringent standards for quality, safety, and performance. Advanced technologies are continuing to emerge 
to assist with bridge inspections. These technologies, including sensors, 3D scanning [19,20], 
photogrammetry [21–23], LiDAR (Light Detection and Ranging) and Digital Image Correlation [24,25], 
machine learning and Artificial Intelligence (AI) [26,27] have played a crucial role in advancing 
measurement capabilities in structural engineering. 

Vision-based measurements offer several advantages, including the ability to capture measurements in 
multiple locations within the field of view. This method allows the use of different cameras for various 
purposes, ensuring easy and quick deployment. The ability to "re-test" by replaying videos is another 
notable advantage, along with non-destructive measurement that minimizes disturbance to traffic and 
geopolitical considerations compared to conventional methods. Engineers can effectively utilize this 
measurement technique as a reliable and relatively low-cost approach for assessing structures. Furthermore, 
they can update models and create digital twins by calibrating them based on captured measurements. 

Digital imaging technology has transformed remote structural monitoring, allowing non-contact monitoring 
of structures and infrastructures that pose challenges for traditional sensor arrays [28,29]. This includes 
large-scale composite structures, the wind energy and aerospace sectors, difficult-to-access locations such 
as bridges, and culverts [20,29–32]. Additionally, digital imaging offers optical flow for measuring 
displacements, enabling the visualization of magnified versions of small displacements and precise 
structural vibration measurements [20,33]. 

Reagan et al. [34] devised an innovative method for non-contact, optically based measurements for health 
monitoring of bridges in challenging or hazardous locations. They combined the use of an unmanned aerial 
vehicle and three-dimensional digital image correlation. Baqersad et al. [21] reviewed the application of 
various photogrammetry techniques (including DIC) in structural dynamics, comparing them with other 
measurement techniques such as laser Doppler vibrometry and interferometry techniques. Displacement 
measurements of a large-scale scaled model of a structure were monitored via a low-cost 360° panoramic 
camera-based measurement, with nodes in images automatically located and tracked by a proposed deep 
learning-based algorithm [35]. 

UNDERWATER INSPECTION AND DATA ANALYSIS 

For the inspection of underwater components, the focus was on robotic methods, particularly those that use 
digital imaging as a sensor payload. The choice of robotics was based on conversations with DOT partners 
and an assessment of the challenges associated with human dive team inspections.  
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Underwater robotic inspection 
For the purposes of this report, the term robot is used to refer to autonomous, semi-autonomous, and 
remotely piloted systems including Remotely Operated Vehicles (ROVs), and Unmanned Surface Vehicles 
(USVs). The integration of robotic systems significantly enhances the capabilities of infrastructure 
inspection and monitoring in both above water and underwater environments [36–39]. For a thorough 
understanding of the application of the robotic systems in infrastructure monitoring the reader is directed 
to [40,41]. In particular, examining the above-water segments of structures using robots has been a frequent 
topic of study [42–44]. Utilizing multiple teams of robots requires considerations such as autonomy in 
navigation and different levels of collaboration between robots or human operators [45]. In one study, the 
authors proposed a framework for a team of robots split into two roles: certain robots approach the structure 
collecting detailed information (proximal observers) while the rest (distal observers) keep a distance 
providing an overview of the mission and assist in the localization of the proximal observers [46]. 
Combining the efforts of human operators with robots that are used to capture images in more hazardous 
or hard-to-reach locations is a widely employed method in inspection [38,47,48] that facilitates 
comprehensive data collection. This collaborative approach improves the quality and quantity of data 
acquired.  Overall, the literature review points to a major need for many more studies on applications for 
submersible robots. The lack of studies on underwater robotic systems is largely due to challenges with 
underwater imaging, scene understanding, and analysis. 

Underwater imaging and image analysis 
The underwater environment poses substantial challenges for scene understanding. These challenges are 
predominantly due to the intrinsic variability of aquatic settings, characterized by factors such as depth of 
water [49], and light [50]. The interaction of light with water involves scattering and absorption, referred 
to as attenuation [49]. Environmental factors like the existence of particulates in water [51,52] and 
fluctuating underwater light conditions (flicker) [53], can significantly undermine image quality in 
underwater scenes and also can alter color consistency and contrast [52,54]. Environmental conditions can 
culminate in detail loss and color alteration [55]. Variability in luminance conditions and other material 
attributes of underwater environments can further distort color uniformity and contrast [52]. Camera-related 
elements like lens distortion and chromatic aberration [56], as well as experiment-specific metrics like 
camera-to-structure distance and surface texture and reflectivity, also contribute to these variances. Several 
underwater image enhancement methods have been proposed, including  filter based methods [57,58], color 
correction based methods [59,60], image fusion based methods [61] as well as fusion of multiple data 
sources, like optical and sonar image fusion [62,63], or acoustic and stereo camera fusion [64].  

Recently, the landscape of underwater imaging technology has witnessed substantial advancements across 
various areas, including image enhancement and restoration techniques [49,54,61,65,66]. Comparing image 
restoration techniques with image enhancement, the latter is simpler because it does not require additional 
prior knowledge about the water parameters. Underwater image enhancement techniques include, but are 
not limited to, contrast enhancement, non-uniform illumination correction, and color correction techniques 
[49].  

Depth estimation is a popular topic, given its influence on understanding the underwater scene. A method 
employing an unsupervised network for depth estimation and color correction from monocular images 
addresses the issue of model generalization [67]. Studies also include obtaining a simple yet fast binary 
representation of the foreground and background depth map of the underwater scene with low-level image 
features [59], deriving inherent optical properties from background colors [68], and a depth estimation 
method based on image blurriness and light absorption [52]. The exploration of depth estimation based on 
water classification using monocular images marks a significant advancement in robotic underwater 
perception [69].  
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The creation of specialized datasets tailored to underwater environments is crucial as these resources enable 
the training and testing of machine learning models on data that reflect the complexities of these settings 
[50,61,70]. However, it is important to note that despite the notable successes of deep learning, its demands 
for extensive datasets and complex tuning can be challenging, and are often excessively complex [71]. 
Consequently, techniques that do not require extensive labeled datasets or complex tuning, such as 
techniques applied on a single image, are an important subset of approaches. 

In underwater imaging, images are often unlabeled and originate from diverse global locations with varying 
visibility conditions. These images, captured by different individuals, present unique challenges due to the 
absence of standard references for water type and environmental conditions [49]. Direct measurement of 
water quality parameters like turbidity or light penetration using instruments is often very challenging. As 
a result, metrics derived from images are often used. The diverse distortions, including chroma decreasing, 
low contrast, nonuniform illumination, blurring, non-uniform color casting, and noise from complicated 
factors present in underwater images make it hard to establish a universal image quality metric for all types 
of underwater environments [61]. Among different quality assessment metrics, the Underwater Color Image 
Quality Evaluation (UCIQE) metric [72] significantly contributes to evaluating and understanding 
underwater image quality and color distortion along with many other image quality metrics such as the 
Color Image Quality Index (CIQI) [73]. In addition, there exist revised metrics like Color Quality 
Enhancement (CQE) [74], which linearly combines different metrics for colorfulness, sharpness, and 
contrast. Introduction of the Simulated Water Type Dataset (SWTD) based on Jerlov water types furthers 
this effort by providing a platform for underwater image quality analysis [75]. 

The categorization and analysis of images based on their similarity are essential for many analysis 
applications such as content-based image annotation and image retrieval. For instance, consider 
applications where scene-specific image processing is necessary [50]. This allows for targeted monitoring 
of areas prone to rapid degradation, improving the management and prioritization of maintenance activities 
[70]. Consequently, engineers can more precisely evaluate structural issues like wear, corrosion, or 
biofouling, enabling timely interventions that prevent failures and ensure adherence to environmental and 
safety standards.  

The problem of creating a 3D reconstruction of solely underwater portion of the structure or the above water 
portion have been studied extensively and the reader is directed to [76–78] for additional comparison 
between different techniques and their key features. A major research area is on generating comprehensive 
3D reconstructions of submerged infrastructure. Although there have been attempts to achieve this using 
tools such as multi beam sonar [79], or combinations of sonar and laser data [80,81], limited work has been 
reported employing SfM. The influence of focal length on 3d measurement is investigated for underwater  
scenes in [82]. Linking below and above water 3D reconstructions using installed targets and a stereo rig  
capturing data from both medium simultaneously was considered in [83]. 

DIGITAL IMAGE CORRELATION IN BRIDGE MONITORING 

Vision-based measurements utilizing DIC have significantly improved engineering, particularly in 
structural analysis. They provide non-contact methods for capturing deformations and movements in 
structures and objects [84], marking a shift from visual inspections to more reliable monitoring systems 
[85]. DIC achieves this by numerically correlating a selected subset of the digitized intensity pattern of the 
undeformed object, enabling the acquisition of full-field deformations [86]. Monitoring data related to 
deflection or displacement of structures under various loads, including seismic or vibrations, involves 
capturing the relative motions of points (pixels in a region of interest) in the video recording [86]. DIC 
systems are exemplified by Imetrum Dynamic Monitoring System (DMS) [87], the commercial system 
used for this research project. 
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The wide adoption of full-field and non-contact measurement in DIC has piqued interest in large-scale 
composite structure testing, wind energy, and aerospace sectors for displacement and strain measurements 
under static loading and operational modal analysis in dynamic structural tests. This is due to the advantages 
of DIC over conventional point-wise measurement techniques [32]. DIC has demonstrated capabilities in 
non-contact target tracking of bridges (e.g., pedestrian bridges) under seismic and dynamic loads, 
suggesting its potential for larger structural health monitoring applications [22]. Vibration measurements 
and model updating techniques provide the potential to optimize the structural performance of various 
structures under diverse operational and environmental conditions using different approaches, whether 
deterministic or probabilistic. 
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C H A P T E R  3  

Robotic imaging for underwater structural 
inspections 

INTRODUCTION 

The literature review covered in Chapter 2 highlighted the fact that underwater robotic imaging has not 
seen widespread adoption as an inspection technology, particularly relative to more established 
technologies such as sonar. There are two primary reasons for this. The underwater environment is highly 
variable with respect to imaging conditions, and the impacts of those conditions on image quality are not 
well understood. Additionally, there is a lack of methods designed to characterize the quality and nature of 
the underwater images themselves. This characterization is important for downstream analysis tasks such 
as image processing and defect detection, algorithmic tasks that are difficult to generalize across broadly 
varying underwater environments. Chapter 3 covers the studies undertaken in response to this assessment.  

ROBOTIC INSPECTION METHODOLOGY 

The goal of this work was to capture images in underwater scenes and use them to create 3D reconstructions, 
following the approach illustrated in Figure 2. This comprehensive pipeline, inspired by the workflow 
described in reference [88], includes dataset collection and preparation and a 3D reconstruction pipeline. 

  
Figure 2. Robotic inspection framework. 

Image preprocessing 
Regardless of the imaging modality, images in this work are acquired in the form of videos. Key frames are 
extracted from these videos based on a similar approach introduced in [89]. These frames are then further 
reduced to minimize computational efficiency based on the clustering approaches discussed in [90]. 

Data acquistion Video 
conversion

Scene-based 
clustering

Frame selection 
and reduction

Image 
enhancementSfMMVS3D 

reconstruction
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To improve image quality, WaterGAN [91], an unsupervised generative model recognized for its efficacy 
in enhancing and color-correcting underwater images was utilized here. WaterGAN's architecture is adept 
at addressing the non-uniform color shifts and varying degrees of blurring and light absorption often present 
in underwater imaging, making it particularly suited for the heterogeneous conditions of underwater scenes. 
Its generative approach facilitates the reconstruction of lost details and the correction of color casts, thereby 
significantly improving the fidelity of underwater imagery.  

3D scene reconstruction 
SfM is primarily used to recover the 3D positions of camera viewpoints and a sparse set of 3D points from 
a sequence of images. It involves identifying key points across multiple images, matching these points 
between images, and then using these correspondences to infer both the 3D position of the points and the 
pose (position and orientation) of the camera when each photo was taken. The output is typically a sparse 
3D point cloud, as it focuses on significant features in the image. This sparse point cloud is further processed 
to create a dense point cloud. The details of the SfM process are not included here, for brevity. For an in-
depth exploration of optical methods in 3D reconstruction, readers are referred to [78].  A rigorous 
parameter sensitivity study was undertaken to optimize the quality and robustness of generated point clouds.  

After obtaining the 3D point cloud, manual refinement and the application of more robust techniques are 
needed to eliminate outliers and smooth the point cloud. As demonstrated in the author's previous work 
[92,93], kriging has proven beneficial, leading to a better alignment of points within the grid, an anticipated 
advantage when registering above and below water point clouds. 

Registration, scaling, and camera calibration  
In 3D modeling and image processing, registration, scaling, and calibration are critical processes that 
enhance the accuracy and utility of data [94]. Point cloud registration employs algorithms such as the 
Iterative Closest Point (ICP) to align multiple point cloud datasets into a single coordinate system, 
effectively minimizing discrepancies across different captures. This process often utilizes reference objects 
known as calibration targets, which are placed in the scene to provide fixed reference points. 

Inspired by other researches [82], a custom target system was designed and manufactured using two cast 
acrylic sheets (Figure 3). In the target the following features were included: Connection holes, aligned 
holes, ruler-like indentations, rectangular circular and star-shaped carvings, and a unique grid pattern. Each 
feature supported the pattern recognition capabilities of the algorithm. 

Two calibration targets were assembled and mounted on an aluminum beam, allowing for the system to be 
placed in such a way that one board would be submerged and the other above water. Adjacent to each target 
board, color calibration boards were placed, ensuring accurate color correction. The target system facilitates 
registration by providing a diverse array of distinct, easily recognizable features. The high-contrast features 
also supported camera calibration by providing multiple high quality points for feature detection. This aids 
in the determination of camera distortions and the calculation of both intrinsic and extrinsic parameters, 
which are essential for accurate 3D reconstruction. The known dimensions of the scale bars provide a 
measurable scale within the imaging field. The calibration targets were used to correct lens distortions and 
improve the fidelity of color in images. and ensuring that the imagery from different cameras can be 
integrated seamlessly.  
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Figure 3. The custom targets and color boards used in this study, with geometric patterns and 

color chart. 

Evaluation metrics for 3D reconstructions  
To assess the quality of the 3D reconstructions generated in this study, various evaluation metrics were 
employed. One of the metrics used to evaluate the quality of 3D reconstructions is the percentage increase 
in matched photos and extracted features. A higher percentage increase in matched photos and extracted 
features typically results in a more accurate and complete 3D reconstruction.   

Reprojection error is a widely used metric for evaluating the accuracy of 3D reconstructions. It measures 
the average discrepancy between the observed 2D image points and the projected 2D image points obtained 
by reprojecting the reconstructed 3D points back onto the image plane. Lower reprojection errors indicate 
a more accurate reconstruction. 

Point cloud density is a measure of the spatial distribution of points within the point cloud. It is an essential 
metric for evaluating the level of detail in a 3D reconstruction. Higher point cloud density generally leads 
to more detailed and accurate representations of the underlying structure, which is crucial for effective 
damage assessment and structural health monitoring.   

Completeness is a metric that quantifies the extent to which a 3D reconstruction covers the entire structure 
of interest. A high level of completeness ensures that all parts of the submerged infrastructure are 
represented in the 3D model, critical for a comprehensive assessment of structural integrity. Completeness 
can be assessed by comparing the reconstructed model with ground truth data or expert annotations, where 
available   

Another common approach is to use reference points on the 3D calibration target as check points for 
accuracy assessment. The RMSE between the reconstructed coordinates and the known coordinates of 
check points can then be calculated [95]. 

STUDY 1: EXPERIMENTAL ANALYSIS OF ROBOTIC IMAGING 

Laboratory Testing 
The laboratory experiments were conducted in a circular water tank. A bracing system was designed to 
maintain the specimen centrally suspended in the water column at a predetermined height from the tank's 
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base. The specimen was attached to an inverted turntable via a connecting rod, enabling controlled 
rotational movements within the aquatic medium (Figure 4).  

 
Figure 4. Lab experimental setup. 

Imaging and lighting 
For the above-water imaging, an Olympus TG-6 camera was mounted on a retractable rod that utilized a 
bracing system analogous to that of the specimen. This arrangement facilitated precise positioning and 
movement of the camera, mirroring the dynamics experienced in actual field conditions. The camera was 
positioned at a specified distance from the specimen to optimize the field of view and image clarity, thereby 
increasing the efficiency of the data collection process. In parallel, for the underwater imaging, a GoPro 
camera equipped with an underwater housing was deployed. This setup ensured coverage of the underwater 
portion of the specimen along the above water at the same time, aligning with the experimental objectives.  

The lighting environment was controlled using a combination of artificial light sources including 
photography light stands, soft boxes, and umbrellas used as light modifiers. These tools were employed to 
achieve a range of lighting conditions categorized into three levels: low, medium, and high intensity. The 
intensity was regulated by the number of active light bulbs, with their distribution carefully adjusted to 
maintain symmetrical lighting relative to the specimen's location. Light intensity measurements were taken 
using a light meter. Although the use of light modifiers slightly reduced the intensity, they were critical in 
diffusing the light to produce uniform and homogeneous illumination of the specimen, considering the 
camera's viewing angles.  

The artificial lighting was intended to mimic natural sunlight conditions typically encountered in field 
settings. Additionally, three sets of specialized LED lights were integrated into the camera rig to enhance 
the illumination of the underwater parts of the specimen, ensuring that all visible surfaces were adequately 
lit for high-quality imaging.   

Turbidity modeling 
There are a variety of methods used to simulate the optical conditions commonly encountered in natural 
underwater environments and that typically degrade image quality. These conditions include reduced 
visibility, color distortion, and scattering effects, all of which pose significant challenges in underwater 
imaging. This work focused on water turbidity, a common challenge in marine environments. To simulate 
turbidity, Kaolin clay was added to the water tank in increments, as shown in Table 1. As a baseline, the 
specimen was also imaged in an empty tank (case 0). 
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Table 1. Created turbidity via added Kaolin clay. 

Case # Kaolin weight (g) 
1 0 
2 7 
3 14 
4 21 
5 28 

Test specimens  
A novel 3D specimen was designed to simulate various defect types and sizes (Figure 5). The specimen 
was designed as a hexagon with six flat vertical surfaces, each serving as a canvas for artificial defects. 
This shape was chosen because it allows for equal distribution and clear visibility of defects. Defects were 
designed to emulate both material removal (indentation) and addition (extruded volume), mimicking real-
world damage scenarios such as cracks, bulging, swelling or other kinds of visible deformations. Half circle 
shapes were applied on sides 1 (indentation) and 4 (additional volume). Triangle shapes were applied on 
sides 2 (indentation) and 5 (additional volume). Rectangle shapes were applied on sides 3 (indentation) and 
6 (additional volume).  

  
Figure 5. Specimen model and sketch. 

Given the reliance of photogrammetry for reconstruction, the initially texture-less 3D prints were modified 
to enhance feature recognition. To this end, the surfaces of each specimen were speckled with red, green, 
and blue paint. This not only facilitated the photogrammetry process by enhancing surface detail visibility 
but also allowed for the examination of color degradation effects in underwater conditions.  

Laboratory experimental results 
The 3D reconstructions generated using the SfM pipeline are shown in  Figure 6. In all the cases the distance 
between the camera and the target is 1 m. As the turbidity increases, the uncertainty in the point cloud is 
increases due to the inherent noise in the scene. The added noise in Case 5 (highest turbidity) results in the 
reconstructed surface no longer being a flat surface. The images for Case 5 were then enhanced using 
WaterGAN and the results is shown in Figure 7. Although the 3D reconstruction is significantly improved, 
it is still dramatically degraded. 
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Figure 6. 3D reconstructions under laboratory conditions, for increasing levels of water turbidity 

(from left to right). Far left case is for an empty tank (Case 0). 

 
Figure 7. Visual representation of Waternet enhancement in the highest turbidity condition (Case 

5): 3D reconstruction and representative images. 

Field Testing 
Full-scale field testing of the 3D reconstruction process was also undertaken. In this study, a robot-human 
collaborative strategy was employed for data acquisition [45]. The teaming strategy combined the efforts 
of human and Remotely Operated Vehicles (ROVs) to capture images in challenging underwater 
environments. The main subject of the study was a pier of a bridge located in Occoquan, VA. The pier 
number 3 and 4 as depicted in Figure 8 was the main target of data acquisition. During tests   
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Figure 8. Occoquan bridge and target piers shown by red rectangles. 

Data acquisition 
For underwater imaging, both a robotic and manual imaging system were tested. The manual system 
included a GoPro camera fitted with an underwater housing and a specialized underwater Wi-Fi transmitter, 
accompanied by additional lighting to optimize visibility (Figure 9). Although in underwater environment 
the absorption of light components varies with the depth, in close-range capture this problem can be solved 
by using artificial light sources as strobes or lamps [55]. An ROV camera operated at a resolution of 1920 
x 1080 pixels, balancing image quality with data manageability. Additionally, the TG-6 camera, utilized 
for capturing videos from above water, also recorded at a resolution of 1920 x 1080 pixels.  

  
Figure 9. Underwater manual imaging system. 

The data acquisition process was conducted under various test conditions over 3 days that presented a range 
of challenges for image capture and 3D reconstruction. Factors such as water turbidity, light conditions, 
and water currents impacted the operation and consequently the image quality and the resulting 3D 
reconstructions (Figure 10).   
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Figure 10 An overall view of the bridge pier, and the acquired images from underwater and above 

water portion of the pier. 

Field experimental results 
A sensitivity analysis of the SfM parameters was conducted for the underwater dataset (Table 2). The results 
for a subset of dataset are visualized in Figure 11, showing different combinations of parameters and the 
difference they make in the 3D reconstruction.  

Table 2. The configuration of parameters in Model A, B, and C. 

Case name Model A Model B Model C 
Camera model Pinhole Radial Radial 

Estimate affine shape No No Yes 
Guided matching No No Yes 

Compute relative pose No Yes Yes 
Ba global use pba No Yes Yes 

 
Figure 11. Visual comparison of parameter study for model A, B, and C. 

As depicted in Figure 12 and Figure 13, guided matching emerged as a crucial factor in enhancing the point 
cloud’s quality and exerted a significant influence on the overall results. In addition, considering variable 
parameters in the case of close-range underwater infrastructure monitoring, additional constraints such as 
considering the scene as planar and estimating affine shape throughout the process can prove beneficial. 
This is particularly true for scenarios involving the condition assessment of large infrastructures like piers, 
ships, dams, and the like, where the scene is typically planar. 
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Figure 12. Relative importance of binary hyperparameters in the reconstruction process 

 
Figure 13. Comparative performance metrics for 3D reconstructions. 

As confirmed in the lab tests, the turbidity observed during field testing was too high for successful 3D 
reconstruction. The usage of image enhancement techniques proved to be useful in the visual appeal and 
detection of defects (Figure 14), but it was not able to overcome the low light and turbid conditions. The 
amount of murkiness in the field test riverine environment was more than the highest turbidity scenario 
model in the lab. The conclusion is that additional advancements are necessary before 3D reconstructions 
can be viable under similar field conditions. 
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Figure 14. Underwater infrastructure images before and after Waternet enhancement. 

Findings and Conclusions 
This research aimed to develop a pipeline for condition assessment of submerged infrastructure using 
Structure-from-Motion (SfM), clustering and machine learning techniques, combined with robot-human 
collaboration for data acquisition. GAN-based image enhancement techniques improved the quality of 
underwater images, leading to better input data for the SfM pipeline. The SfM pipeline in the laboratory 
environment proved to be effective. The robot-human collaborative strategy proved to be effective in 
capturing underwater images under field conditions. However, turbidity, water currents, and visibility 
changed throughout the tests, which affected image quality. The high levels of turbidity and low light in 
the testing environment made SfM reconstruction extremely difficult and only limited reconstructions were 
possible.  

Recommendations For Future Studies 
The enhancement techniques applied in this study significantly improved image quality. However, several 
potential improvements were identified:  

• Adaptive enhancement techniques: Future research could investigate adaptive enhancement 
techniques that can adjust their parameters based on the characteristics of each image, resulting in 
better overall image processing performance. 

• Integration of deep learning: Deep learning-based image enhancement methods have shown 
promising results in underwater imaging. Investigating such methods could lead to improvements 
in image quality.  

Enhanced Original 
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• Use of other data sources: Fusing sonar data or employing laser scanner could help. However, the 
cost associated with these methods should be considered.  

• Scour detection: the poor visibility at the marine bed is challenging for divers and robots alike. 
Most of the conventional robots use propeller thrust to navigate. This potentially leads to shifting 
debris, algae and other disturbances that reduces the visibility and increase turbidity. Alternative 
robotic systems that do not cause such disturbances should be studied. 

STUDY 2: ANALYSIS METHODS FOR CATEGORIZING AND CLUSTERING 
UNDERWATER IMAGES 

While recent advancements in underwater image analysis across fields such as object detection, image 
enhancement, and image restoration are notable, the challenges posed by unlabeled and no-reference images 
from diverse global locations and varied visibility conditions remain significant. Unlike conventional 
approaches that focus primarily on objects within images, this study emphasizes analyzing inherent image 
features to enhance understanding and interpretation in the absence of reference data. 

This research introduces a novel pipeline designed for categorizing and clustering underwater images based 
on intrinsic scene characteristics, specifically targeting characteristics associated with visibility, color, 
texture, and content, ultimately capturing the water type condition. This approach is particularly pertinent 
as it shifts the analytical focus from object-based to environment-based understanding, which is critical in 
diverse aquatic conditions. 

The study is structured around three primary objectives: 
• Development of robust preprocessing and feature extraction methods. 
• Exploration of dataset characteristics for effective feature selection and dimensionality reduction. 
• Application of the pipeline to real-world video datasets in underwater structural health monitoring 

Characterization Methodology 
The presented methodology is shown in Figure 15, and is motivated by the comprehensive pipeline 
previously laid out in [88]. Methodological steps include preprocessing of the data, extraction of features, 
dataset analysis and cleaning, dimensionality reduction, outlier detection and removal, clustering, and 
ultimately interpretation of the obtained clusters and their correlation with different water types associated 
with different scenes.  
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Figure 15. The image characterization pipeline followed in the present study. 

Feature extraction 
This study considered both local and global low-level features of intrinsic image properties, such as color 
and texture, as well as complex patterns that emerge from background lighting and scene composition [96]. 
Extracted attributes are categorized based on their functions and objectives, as shown in Table 3.  

Table 3. Overview of image feature extraction techniques employed. 

Color and lighting analysis Texture and clarity analysis Quality assessment 
metrics 

Color histogram (HSV, yCrCb, Lab) LBP UCIQE 
Color moments Variance of Laplacian CIQI 

Background light Sobel edge detector  

In image analysis, the most salient attributes are often color and lighting features [97,98]. Hence, color 
profiling is a crucial part of the feature extraction process. Techniques like color histograms [99], color 
correlograms [100], and color moments [101] are commonly employed to extract color features due to their 
independence from image size, rotation, and zoom variations [100], and robustness against deformations 
and scale changes [102].  

Texture analysis employs spectral and spatial (statistical) descriptors like Local Binary Patterns (LBP), 
which evaluates the textural patterns based on the statistical properties of pixel intensities [103,104]. For 
clarity analysis, accurate blur detection is essential. While deep learning methods such as Convolutional 
Neural Networks (CNNs) are effective for this purpose, they are also computationally intensive [105]. As 
an alternative, spatial domain-based methods are utilized due to their lower computational demands [106]. 
A notable method in this category is the variance of Laplacian, a second-order derivative metric that acts 
as a high-pass filter [107,108]. This metric can be utilized to evaluate blur by measuring the variance in the 
image's Laplacian, where higher values indicate sharper images [109]. Additionally, perceptual blurriness 
metrics involving edge detection are employed [110], notably using the Sobel operator, a first-order 
derivative method commonly used for its edge-detection capabilities. 

Image quality is affected by factors such as the optical performance of the equipment, instrument noise, 
imaging conditions, and processing techniques [54]. Numerous quality metrics have been presented in the 
literature, each with its advantages and disadvantages [111,112]. For underwater images, the Underwater 
Color Image Quality Evaluation (UCIQE) metric [72] is widely used for image quality and color distortion 

Interpretation

Clustering

Outlier detection and removal

Dimensionality reduction

Feature selection

Image feature extraction

Data preprocessing
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analysis [61]. In addition to underwater image quality metrics, it is essential to consider metrics designed 
for non-aquatic mediums. The Color Image Quality Index (CIQI) [73] offers a valuable perspective for 
evaluating images captured in atmospheric conditions. 

Feature selection and dimensionality reduction 
A variety of dimensionality reduction techniques (DRTs) are available, each tailored to preserve specific 
characteristics of the original data, making them appropriate for certain applications while potentially less 
effective for others [113]. Principal Component Analysis (PCA) is a linear DRT that utilizes eigenvalue 
decomposition [114]. t-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear dimensionality 
reduction technique that models high-dimensional data by preserving local structures, projecting similar 
data points close together and dissimilar ones apart in lower-dimensional space [114]. Uniform Manifold 
Approximation and Projection (UMAP), while similar to t-SNE in goals, employs a different approach by 
using an exponential probability distribution across any chosen distance function, without normalizing 
probabilities [114]. UMAP excels in visualization and runtime efficiency compared to t-SNE. Given the 
distinct behavior of each technique, PCA, t-SNE, and UMAP were each considered for dimensionality 
reduction.  

Feature evaluation and outlier removal 
K-means clustering was applied to feature vectors reduced by PCA, t-SNE, and UMAP. The effectiveness 
of these dimensionality reduction techniques was assessed by examining the clarity and separation of 
clusters formed, Key metrics used include the Silhouette Score and the Calinski-Harabasz Index and hybrid 
versions of these metrics found in the literature [115]. 

Outlier detection and removal is pivotal in data analysis due to the potential of outliers to significantly skew 
results. In this study, a composite strategy incorporating results from the Modified Z-score, Tukey’s 
method, and Isolation Forest was implemented. This approach identifies outliers by intersecting findings 
from these methods. One common method is the Modified Z-score, utilizing the median and the median 
absolute deviation as robust estimators. Tukey’s method, also known as the Boxplot technique, calculates 
outliers based on quartiles rather than the mean and standard deviation. The Isolation Forest technique 
leverages unlabeled data for outlier detection, isolates observations by randomly selecting a feature and a 
split value between the maximum and minimum values of that feature. An ensemble of trees is then 
constructed through recursive partitioning, where the path length to isolate a sample indicates its anomalous 
nature; shorter paths suggest outliers [116]. 

Clustering 

Three canonical clustering methods are considering in this work: K-means, DBSCAN, and Hierarchical 
Clustering. K-means is a well-established centroid-based clustering algorithm that partitions the dataset 
into k distinct, non-overlapping clusters [114,117]. Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) excels at identifying clusters of arbitrary shapes and effectively distinguishes outliers. It 
classifies points as core, border, or noise based on local density [117]. Hierarchical clustering builds a 
hierarchy of clusters either bottom-up (agglomerative) or top-down (divisive) [114,118].  

Experimental Analysis 

Datasets 

The effectiveness of the proposed pipeline is demonstrated on two distinct datasets. The first one is the 
Underwater Image Enhancement Benchmark (UIEB) database [119], comprised of 890 underwater images 
representing a wide range of real-world underwater scenarios including coastal and oceanic environments 
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with varying visibility and image resolution. The dataset considered in this research consists of 890 
underwater images sourced from the Underwater Image Enhancement Benchmark (UIEB) database [119]. 
These images represented a broad spectrum of real-world underwater scenarios, encompassing both coastal 
and oceanic environments with varying degrees of visibility and image resolution. The selection of this 
dataset was driven by its diverse content, which was instrumental in enhancing the generalizability of the 
developed pipeline. A representative subset of these images is illustrated in Figure 16. 

 
Figure 16. Sample images from the UIEB dataset. 

The second dataset is a real-world video dataset captured by the authors during the previously discussed 
field teating. This dataset was designed to test the pipeline’s performance in a maritime infrastructure 
inspection environment. The primary data collection site was the piers of the bridge. Data capture employed 
a GoPro Hero 10 action camera mounted on a specialized rig, illustrated in (Figure 9). This rig was equipped 
with three LED lights and housed in a protective underwater casing to safeguard against impact and damage. 
Additionally, a Wi-Fi extender was mounted on the backside of the housing to make signal transmission 
above water possible, allowing for remote control of the camera via the GoPro mobile app. The camera was 
maneuvered repeatedly between the above and underwater sections of the structure. The data collection 
spanned three days to vary environmental conditions such as lighting, and tidal and current changes, 
producing a diverse set of images with varying degrees of water turbidity and lighting quality. 

Results on UIEB dataset 

To analyze the feature distribution within the dataset, histogram analysis was performed.  The histograms 
demonstrated that the UCIQE quality measure feature effectively differentiated dataset values, whereas 
some other features could not achieve similar differentiation, as illustrated in Figure 17.  

 

 
Figure 17. Histogram of scaled dataset for the variance of Laplacian in v channel demonstrating 

blurriness characteristics (left), the CIQI metrics (middle), and quality UCIQE metrics (right). 
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The effectiveness of these dimensionality reduction methods was assessed using the Calinski-Harabasz 
Index and Silhouette Score. As illustrated in Figure 18, PCA demonstrated incremental improvements in 
Silhouette scores as components increased from 1 to 5, reaching a peak score of 0.14.  Further increases in 
components did not yield additional benefits. The optimal configuration achieved a Silhouette score of 0.13 
with 700 neighbors and 3 dimensions. Furthermore, Figure 19 showcases the best hyperparameters for the 
t-SNE method, encompassing dimensions and perplexity. The peak Silhouette score here reached a lower 
peak at 0.12 with a perplexity of 90 and 3 dimensions. Consequently, PCA with more than 4 components 
demonstrated superior performance. 

 
Figure 18. Silhouette scores for different numbers of PCA components. 

 
Figure 19. Silhouette score heatmap for different hyperparameters in the t-SNE method. 

The excluded outliers detected by each method, resulted in 519, 874, and 822 images remaining for Tukey’s 
method, modified Z-score, and ISF methods, respectively. The highest overlap in outlier identification 
occurred between the modified Z-score and ISF methods (0.75). The Z-score approach was highly effective 
at outlier removal, successfully identifying key outliers as demonstrated in Figure 20. 
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Figure 20. Distribution of detected outliers using the modified Z-score method (Threshold=3). 

Following the selection of the remaining part of the dataset after outlier removal, various clustering 
techniques including K-means, DBSCAN, and Hierarchical Clustering were utilized to determine the best 
settings. Considering the results obtained through the Silhouette Score, CH Index, and WSS for different 
clustering algorithms, K-means clustering with five clusters is deemed the most suitable. It is important to 
highlight that due to the nature of hierarchical clustering, it is more interpretable, which may be 
advantageous for correlating specific characteristics within the dataset (Figure 21). 

 

 
Figure 21. K-means clustering performance evaluation metrics, WSS, CH index, and Silhouette 

score. 

The concluding phase organized images into cluster-specific categories, as depicted in Figure 22. As 
illustrated, five clusters align with the number of water types in the Jerlov model, and each cluster consists 
of similar images. While a direct correlation with Jerlov classes could not be established due to the lack of 
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labeled data, the clustering results offer insights into underwater environmental variations by grouping 
similar scenes together. 

 
Figure 22. Outcome of the clustering pipeline for the UIEB dataset, with four randomly selected 

samples from each cluster. 

Results from field tests 

The images for this dataset were processed through the clustering pipeline as previously applied to the 
UIEB dataset. The feature analysis, selection, and dimensionality reduction procedures were consistent with 
those described earlier. Hierarchical Clustering, in particular, showed promising results, as displayed in 
Figure 23, with optimal clustering revealing three distinct groups. The resultant image clusters are shown 
in Figure 24, with each row representing a different cluster: images from above water, images devoid of 
structural content, and images of the piers.  

 
Figure 23. Calinski-Harabasz (CH) scores and silhouette scores for different numbers of clusters 

in hierarchical clustering for the real-world dataset. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
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Figure 24. Outcome of the clustering pipeline for the real-world dataset, with randomly selected 

samples from each cluster. 

Conclusions 
This study developed and validated a comprehensive clustering pipeline aimed at categorizing underwater 
images based on their inherent scene characteristics, intending to enhance the interpretability of typically 
unlabeled underwater imagery. Employing advanced dimensionality reduction techniques and robust 
clustering algorithms, the methodology systematically analyzed and classified underwater imagery to match 
water scene types described in the Jerlov model. 

The effectiveness of the proposed pipeline was first demonstrated using the well-established Underwater 
Image Enhancement Benchmark (UIEB) dataset, covering a broad spectrum of underwater conditions. 
Through meticulous preprocessing, feature extraction, and normalization processes, the pipeline effectively 
categorized diverse underwater scene characteristics. Dimensionality reduction was achieved using 
Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), and Uniform 
Manifold Approximation and Projection (UMAP), with PCA yielding the most favorable results in terms 
of cluster coherence and separation as evaluated by the Silhouette Score and Calinski-Harabasz Index. 

Additionally, the methodology was applied to a real-world underwater dataset, capturing dynamic scenes 
above and beneath the water at a water crossing bridge. This practical case study tested the pipeline’s 
applicability to structural health monitoring and condition assessment, showcasing its capability to adapt to 
varied environmental conditions. The use of K-means and Hierarchical Clustering, in particular, 
demonstrated the method's adaptability and efficacy across both static images and video data. Looking 
ahead, future work could involve integrating more sophisticated feature extraction and employing ensemble 
methods in clustering to further enhance the robustness and accuracy of underwater image categorization.  

 
 
  

Cluster 1 

Cluster 2 

Cluster 3 
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C H A P T E R  4  

Integration of digital image correlation and 
numerical finite element modeling 

BRIDGE TEST SPECIFICATIONS 

Non-contact measuring systems, including high-resolution (4K) video and laser systems, have become 
increasingly popular for non-destructive monitoring, particularly for structures like practical steel girder 
bridges. A video-based method, proposed for fatigue assessment, allows the measurement of displacement 
responses. The Imetrum Dynamic Monitoring System (DMS), representing vision-based measurement 
systems, operates as a non-contact tool by capturing videos and recording measurement data through 
relative motion points on the video file. DMS employs two-dimensional Digital Image Correlation (2D 
DIC) and consists of cameras and a processor. This technology is advantageous in scenarios where 
traditional sensors are impractical, enabling measurements in challenging cases. Its non-intrusive nature is 
especially valuable for applications where minimizing impact on the structure is crucial, such as historic 
structures or delicate materials. 

The use of vision-based measurements, notably in bridge load testing, eliminates the need for extensive 
sensor installations. Digital imaging, capable of capturing data from multiple points of interest, has become 
crucial for evaluating in-situ conditions in aging bridges in the United States. While the evolving 
technological landscape provides enhanced data capture tools and repeatable post-processing using video-
based images, it is important to note limitations in vision-based measurement deployment, including 
considerations for lighting conditions, skew effect, and field of view when using DIC techniques for point-
to-point tracking of displacements. 

The structural evaluation of a bridge in Virginia, located around the DC area, is the focus of this study as a 
case study undertaken in collaboration with a team at George Mason University (GMU). In Figure 25, an 
aerial view of the bridge with highlighting the camera locations is depicted. This collaborative project 
involves the deployment of the Imetrum DMS system to monitor the bridge and utilize the recorded data 
for creating and calibrating a digital twin model of the current structure. 
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Figure 25. Aerial Google view of the bridge and the location of the deployments of the DMS 

Several challenges arise during the data recording process. These include variations in lighting due to partly 
cloudy weather, leading to false motions detected by the camera. Additionally, physical obstacles like 
seagulls flying within the camera's field of view can cause the DMS to lose track of points at intermittent 
intervals. The distance from the bridge imposes limitations on calibration, relying solely on known 
distances such as span and pier lengths. Figure 26 demonstrates the span lengths in a view from the harbor 
deck. Vibrations from the waves affect the deck where cameras are mounted on tripods, adding complexity 
to capturing deformations. Furthermore, the need for targetless tracking points poses a unique challenge for 
measurement. 

Creating a finite element (FE) model of the bridge presented its own set of challenges, particularly 
concerning unknown loading conditions associated with the weight, location, and speed of passing vehicles. 
The goal is to develop the FE model as accurately as possible, relying on the plans provided. 

 
Figure 26. The bridge and the monitored spans with their length from the harbor deck’s view 

Trucks typically carry a higher weight, leading to increased loads on the bridge and, consequently, higher 
deflection. This facilitates the DMS in capturing deflection during tests. In Figure 27, the passage of an 18-
wheel truck over the bridge is captured within the field of view of the cameras. Two passes of the trucks 
are utilized as a load source for the reference point during model calibration. The calibration primarily 
involves adjusting the boundary conditions, restraints, and joints.  

210’ 172’ 
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Figure 27. Imetrum DMS field of view for (a) camera 1 looking towards the third span and (b) 

camera 2 looking towards the second span. 

The FE model was constructed using CSI Bridge software, with dimensions adjusted based on the provided 
drawing plans. Trucks were assumed to carry 70% of their allowed maximum capacity while moving at the 
maximum allowable speed of 35 mph on the bridge. 

Verification of the Vision-Based Measurement System 
Before conducting the field test, we implemented verification tests to evaluate the effectiveness of the 
vision-based measuring system (DIC) and validate measurement accuracy. These tests were performed on 
a bi-directional shake table at the ATLSS Engineering Research Center at Lehigh University. The 
specialized test involved applying harmonic motions and utilizing known ground motion displacements 
derived from widely recognized ground motion data. The specific test conditions and parameters are 
outlined below:  

Table 4. Lehigh Shake table tests description. 

Test Number Description Test Type 
1 Circle + Rotation 

EW and NS 4in (101.6mm), 5 degree, 0.5Hz 
2D (increasing amplitude) 

2 Manjil Iran Ground Motion 

The capability of the DIC system in capturing the precise data was assessed by thoroughly comparing true 
data (i.e., displacement values) with the measurements. The test setup configurations and camera field of 
view are shown in Figure 28 where the camera was mounted on the catwalk above the shake table with no 
perspective and a capturing data frequency set at 100 Hz. 

a b 
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Figure 28. The shake table test configuration, (a) DMS field of view (b) camera located on the 

catwalk above the table. 

The DIC system, Imetrum DMS, demonstrated satisfactory performance in capturing the motion of the 
shake table under both harmonic and ground motion scenarios. Figure 29 visually presents the Imetrum 
displacement in conjunction with the true displacement data from the shake table in the time domain. This 
depiction underscores the system's capability to precisely record dynamic movements, affirming its 
effectiveness in accurately representing the observed motions. 

The results obtained from these tests also demonstrate agreement in the frequency domain. Figure 30 
illustrates a comparison between the captured data results from the shake table tests and the true 
displacements in the frequency domain. The displacement captured in the Y-axis during Test 1 highlights 
the DMS's capability to accurately capture frequencies. Test 1 results affirm the DMS's ability to track 
motion in two dimensions simultaneously. Test 2, which involves earthquake ground motion monitoring, 
further confirms the DMS's capability to monitor ground motions across a range of frequencies. 

 
Figure 29. Displacement (1in.=25.4mm) captured in the time domain with the DIC in the shake 

table tests. (left) and (right) in X direction versus Y for tests 1 and 2 in Table 4. 

a b 
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Figure 30. Frequency domain of captured displacement with the DIC in the shake table tests in X-

axis (left) and Y-axis (right) (1in.=25.4mm) 

RESULTS 

After verifying the accuracy of the DMS in capturing the displacement in time and frequency domain, this 
section presents the results obtained from the field measurement and model updating using those field 
measurements which were applied to the bridge case study. The maximum deflection on the midspans was 
monitored and used as the target for matching the model results with field measurements. The Finite 
Element (FE) model was constructed according to the plan, with the maximum truck load assumed to be 
70% of the standard. 

In Figure 31 (top), the midspan deflection for the second and third spans of the bridge is shown for two 
different truck passes, compared to the FE model results. The results exhibit promising agreements, 
suggesting that this method can be effectively utilized for updating models and creating a digital twin of 
the structure. 

From monitoring of the bridge pier, the results from the Finite Element (FE) model, depicted in Figure 31 
bottom right, shows the deflection of the top of the second pier in the bridge. It indicates that the anticipated 
displacement values for that point in all directions are below 0.02 inches. Conversely, the field 
measurements, Figure 31 bottom left, present similar outcomes during truck passes for the vertical 
displacement of the top of the pier. Due to the limited deflection range and field constraints, such as the 
considerable distance, DMS was unable to record the deflection for that specific point. 
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Figure 31. Comparative analysis of bridge deflection: (top) midspan deflection in FE model and 

field measurements, (bottom right) FE model results (bottom left) field measurements of the 
second pier in the bridge (1in.=25.4mm) 
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C H A P T E R  5  

Recommendations 

CONCLUSION 

In this study, the transformative potential of video-based image measurements, particularly employing 
Digital Image Correlation (DIC), in the realm of structural health monitoring for bridges was explored. The 
integration of video-based measurements with structural models and the subsequent creation of digital twins 
offers a groundbreaking methodology for accurate and dynamic representation of structural behavior. The 
verification tests conducted on a bi-directional shake table with harmonic motions and utilizing known 
ground motion displacements demonstrated the effectiveness and accuracy of the vision-based measuring 
system (DIC).  

This study focused on a multi-span steel girder bridge, revealing promising results in monitoring midspan 
deflections and bridge pier behavior during truck passes. The use of the DMS proved the advantages of 
vision-based measurements, particularly in scenarios where traditional sensors may be impractical or 
intrusive. The outcomes of this research emphasize the potential of video-based measurements in updating 
structural models, creating digital twins, and enhancing decision-making processes in bridge asset 
management. By providing insights into existing conditions, facilitating model calibration, and offering a 
non-intrusive and cost-effective approach, this innovative methodology holds significant promise for the 
future of structural engineering and infrastructure management. As technology continues to evolve, 
integrating vision-based measurement systems into standard practices could revolutionize the way we 
monitor, assess, and ensure the longevity and safety of critical infrastructure.  
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